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Abstract: Vibrational spectroscopy is a widely used
technique for chemical characterizations across various
analytical sciences. Its applications are increasingly
extending to the analysis of complex samples such as
biofluids, providing high-throughput molecular profiling.
While powerful, the technique suffers from an inherent
limitation: The overlap of absorption information across
different spectral domains hinders the capacity to
identify individual molecular substances contributing to
measured signals. Despite the awareness of this chal-
lenge, the difficulty of analyzing multi-molecular spectra
is often underestimated, leading to unsubstantiated
molecular interpretations. Here, we examine the preva-
lent overreliance on spectral band assignment and
illuminate the pitfalls of correlating spectral signals to
discrete molecular entities or physiological states with-
out rigorous validation. Focusing on blood-based infra-
red spectroscopy, we provide examples illustrating how
peak overlap among different substances, relative sub-
stance concentrations, and preprocessing steps can lead
to erroneous interpretations. We advocate for a view-
point shift towards a more careful understanding of
complex spectra, which shall lead to either accepting
their fingerprinting nature and leveraging machine
learning analysis – or involving additional measurement
modalities for robust molecular interpretations. Aiming
to help translate and improve analytical practices within
the field, we highlight the limitations of molecular
interpretations and feature their viable applications.

Introduction

Infrared (IR) spectroscopy has traditionally been taught as a
powerful modality for analyzing the structure of individual
organic compounds, identifying simple chemicals, or for use
in industrial quality control and process monitoring
procedures.[1–5] More recently, its applications have ex-
panded to the quantitative analysis of complex multi-
molecular mixtures, including innovative applications in
biomedical spectroscopy and photonics.[1,2,6–14] This expan-
sion is partly attributed to advancements in instrumentation
– such as improved spectral resolution, a broader availability
of Fourier transform IR (FTIR) spectrometers, and, lately,
laser-based spectroscopic methods.[1,2,15–19] Additionally,
progress in computational methods and molecular biology
have further driven IR spectroscopy to become a prominent
tool for high-throughput probing of biological
specimens.[1,2,8,20]

IR spectroscopy probes the composition of a given
mixture by simultaneously measuring the resonant vibra-
tional response of present molecular structures when excited
by IR radiation. The principal advantage of the method is its
ability to deliver information on a wide variety of molecular
constituents within a sample in a label-free one-shot
measurement, requiring no prior knowledge and minimal
sample preparation. When analyzing single substances or
mixtures of few organic molecules, it is generally possible to
distinguish between spectroscopic signatures of different
molecular functional groups, rely on well-defined spectral
band patterns, and thus identify specific substances with
high confidence.[1,3,4] The former cannot be performed when
analyzing spectra of more complex multi-molecular samples,
such as biofluids, cellular components, or other biological
media. The overlap in absorption peaks or interference
between different molecular components hinders the ca-
pacity to link spectral signals of different functional groups
to specific substances or even molecular classes (e.g.,
carbohydrates, lipids, or proteins). Thus, while IR spectro-
scopy is highly specific to identifying functional groups,
performing peak interpretations can be challenging, and the
method generally suffers from low molecular specificity
when analyzing complex mixtures to profile biological
systems.[21–25]

Nevertheless, the desire to link spectral signals to
specific substances in a clinical scenario is omnipresent, and
misinterpretations of complex spectra remain widespread
across peer-reviewed literature. In our experience, the
question about the underlying molecular origin of spectral
signals often arises in the scientific discourse. This is usually
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not the right question or viewpoint, as its answers typically
depend on oversimplified assumptions. This situation under-
scores a broader issue: The classical teaching of IR
spectroscopy, which serves well for simple matrices, does
not directly extend to the analysis of molecularly complex
biological media. While many experts in the field are aware
and share this same perspective, there is still a pressing need
for a broader viewpoint shift in how spectral data is
interpreted and presented, moving towards a framework
that accommodates the complexity of biological systems.

In this Scientific Perspective, we critically examine the
limitations inherent to analyzing complex spectra – a topic
that, in our opinion, needs to be more directly and
comprehensively addressed in scientific literature. We focus
on IR spectroscopy of human blood derivatives – native
serum and plasma. We highlight examples from previous

studies where molecular interpretations range from reaching
reasonable and most likely correct conclusions to ones that
are highly speculative and questionable. Using data from
several case-control and health diagnostics scenarios we
have considered previously, we demonstrate (i) how molec-
ular interpretations can be misled by the overlap of
spectrally similar yet biologically very different molecular
substances; (ii) how measurement preprocessing can affect
data interpretations; and (iii) how linking low-abundant
substances, e.g., DNA/RNA, or protein biomarkers such as
cancer antigen 125 (CA125) or prostate-specific antigen
(PSA), to spectral signals is compromised by measurement
sensitivity and background variability. Our analyses and
conclusions are based on different case examples of mole-
cules found in cell-free human blood – proteins, lipid
particles, nucleic acids, and water-soluble metabolites (Sup-
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porting Information Table S1) – for which we measured IR
spectra. We further utilize spectra from several thousand
blood serum and plasma samples experimentally acquired in
our laboratory over the last decade.

Ultimately, we urge users and professionals in the field
of biomedical IR spectroscopy to accept the approach’s
fingerprinting nature, which inherently lacks sufficient
molecular specificity. Importantly, this property does not
prevent IR spectra from being specific to an individual or a
physiological state. To fully capture the informational
content of IR molecular fingerprints, appropriate machine
learning approaches can be used.[1,7,24,26–28] In contexts where
molecular interpretation of experimental IR spectroscopic
signatures is deemed necessary, orthogonal molecular-
specific approaches should be involved, or the sample should
be prepared in a way that reduces its molecular
complexity.[10,29–33] While we focus on IR spectroscopy of
liquid blood derivatives, the principles we discuss generally
apply to vibrational spectroscopy of diverse biological
samples (e.g., cerebrospinal fluid or interstitial fluid).[34] We
aim to help and guide the establishment of vibrational

spectroscopy as a reliable biomedical tool while acknowl-
edging its limitations. We believe that the proposed
approach shall foster broader acceptance of the technolog-
ical strengths inherent to the technique and support bridging
the gap to bring the technology closer to clinical applica-
tions.

Misleading Assignments of Spectral Regions to Molecular
Classes

The desire to systematically interpret the information
encoded in complex spectra has led to categorizing the mid-
IR into distinct regions associated with specific molecular
classes. This resulted in the emergence of depictions within
scientific literature that typically define discrete spectral
regions responsible for protein, lipid, carbohydrate, and
nucleic acid absorption.[35–40] We provide one example of
such a representation in Figure 1A. While the majority of
absorption signals of these molecular classes are indeed
present within the defined spectral regions, several impor-

Figure 1. Misleading molecular assignments of spectral regions. (A) Descriptive labeling of the mid-IR commonly assumed in scientific literature to
link different molecular classes to discrete spectral regions. A typical spectrum of human blood serum is shown in black. (B-G) Comparison
between the absorption of various blood serum components recorded separately and scaled by their typical concentrations in healthy individuals
(Supporting Information Table S1). Gray arrows indicate the counterclockwise sequence of the panels. HSA - Human serum albumin; HDL - High-
density lipoprotein; LDL - Low-density lipoprotein; VLDL - Very-low-density lipoprotein; ATP - Adenosine triphosphate; IgA - Immunoglobulin A; A1AG -
Alpha-1-acid glycoprotein.
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tant issues render this approach oversimplified and can
encourage a perspective that overlooks complexities in peak
interpretations.

First, there is the straightforward yet important consid-
eration of the relative concentrations of different molecular
classes in cell-free human venous blood. The most prom-
inent absorption bands of any single protein are the amide-I
and -II bands, located between 1500–1700 cm–1.[2,41] Proteins,
however, have other weaker absorption bands that cover all
the “fingerprint” region that spans 960–1500 cm–1, as well as
the 2800–3000 cm–1 range.[2] On the other hand, the IR
absorption of glucose – the most abundant dissolved
carbohydrate in blood plasma – is indeed strongest in the
region 960–1200 cm–1, and the absorption bands of lipids do
appear in the regions labeled in Figure 1A. The total
absorption of any molecular class, however, is a sum of the
products of concentrations of each constituent and their
absorption spectrum. The high concentrations of many
proteins make their absorption the strongest in any of the
regions mentioned above. To demonstrate this, we compare
the absorption of the single most abundant protein in cell-
free blood – human serum albumin (HSA) – to the
absorption of lipid particles (Figure 1B) and glucose (Fig-
ure 1C). Evidently, the absorption of HSA alone is at least
as significant in these regions as any of the other molecules
in the so-called “lipid” and “carbohydrate” regions, or even
more dominant.

The considerations mentioned above are not limited to
the abundance of proteins. For instance, some water-soluble
metabolites contribute to the absorption between 960–
1150 cm–1, making the “carbohydrate” label of this spectral
region also questionable. As an example, we show that the
IR absorption of glucose in its typical concentration is
comparable to that of adenosine-triphosphate (ATP), a
molecule that does not belong to the carbohydrate class
(Figure 1D). As for the “nucleic acid” region highlighted in
Figure 1A, it should be emphasized that the IR absorption
of DNA and RNA — the primary nucleic acids – cannot be
attributed to any vibrational response of cell-free blood.
These substances are present in concentrations far below the
detection limits of the current technology – a point that we
further address and discuss later in the text.

Importantly, dividing the spectral regions into the four
categories (proteins, carbohydrates, lipids, and nucleotides)
does not reflect the actual composition of cell-free blood.
Lipids, for instance, are not water-soluble and are present in
blood plasma as part of lipoprotein particles – mostly HDL,
LDL, and VLDL – in which triacylglycerols, cholesterol,
and phospholipids are found in various proportions.[42,43]

Furthermore, lipid particles contain a high percentage of
proteins, up to 33% in the case of HDL.[43] As a result, the
experimental IR absorption spectra of HDL, LDL, and
VLDL contain a clear protein spectral signature, in addition
to the absorption bands in the lipid region (Supplementary
Figure S1). Thus, while strong lipid absorption signals can
appear within the highlighted regions shown in Figure 1A,
their absorbance should not be confined to such a restricted
range, as an ensemble of diverse molecules compose each
lipid particle.

Carbohydrates are primarily present in cell-free blood
not as separate molecules but as glycans – bound to proteins
in the process of their post-translational modification.[44]

Due to the chemical similarity of free carbohydrates (e.g.,
glucose) and glycans, attributing a spectral change to an
alteration in the former or the latter is challenging without
additional analysis. To illustrate this, we compare the
absorption of two glycosylated proteins in their typical
concentrations to that of glucose (Figure 1E). It is evident
that the most prominent absorption peak of glucose overlaps
with the spectral band present in the glycoprotein vibra-
tional spectra.

The examples discussed so far may suggest that one can
confidently attribute spectral contributions of proteins, given
their high concentrations. We challenge this assumption in
Figure 1F, which shows the amide-I spectral region that is
typically used to describe changes in the protein secondary
structure.[2,22,41,45–49] We depict the IR absorption of alpha-1-
acid glycoprotein (A1AG), one of the twelve most abundant
proteins in blood plasma, compared to the absorption of
urea and ATP. It is evident that both metabolites exhibit
absorption peaks that could be mistaken for a change in the
protein’s secondary structure. This purely spectroscopic
consideration leads to more general biomedical concerns
about using protein secondary structure change as a
biomarker, as discussed previously.[21,22]

It is also important to acknowledge that there exists a
spectral region that can be quite confidently correlated with
a specific molecular class – the peak centered around
1742 cm–1 (Figure 1G). The total absorbance in this region is
predominantly due to the presence of lipid particles. There-
fore, it would be reasonable to infer a lipid-centric contribu-
tion when a strong signal is observed there, while consider-
ing the overall molecular composition of lipid particles as
discussed above.

Given these considerations, we advocate for caution
when using descriptive labels for discrete regions of the IR
spectrum, even when only intended as a foundational guide.
Such labels may lead researchers to misinterpret the spectral
signals they observe, which often requires a more critical
perspective and experimentation with additional molecular
techniques.

Spectral Similarity of Different Substances

Having demonstrated the limitations of attributing spectral
regions to molecular classes, we now take a more quantita-
tive approach to illustrate the potential for overlap among
the spectra of individual organic substances (Figure 2). We
calculated the hit quality index (HQI)[50] between pairs of
various substances to assess the IR absorption similarity of
different components found in cell-free blood. These include
the spectra of lipid particles, proteins, and water-soluble
metabolites. Given two spectra, represented as one-dimen-
sional vectors u and v of absorption values, the HQI
measures the squared cosine of the angle between the two
vectors [Eq. 1].
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HQI ¼
ðu � vÞ2

u � uð Þ v � vð Þ
(1)

HQI values closer to one indicate higher collinearity
and, therefore, more similar spectral profiles.

The spectra of all investigated individual proteins were
found to be very similar to one another (Figure 2). This
stands to reason, as proteins have a large molecular
structure made of amino acids that share similar functional
groups (namely, the amide bonds). Yet, this analysis clearly
demonstrates that linking any spectral signal to a single
protein “biomarker” is likely to be flawed, as variations in
the concentration of nearly any protein could produce
comparable spectral signals.

Lipid particles are very complex, comprising a mix of
cholesterol, triglycerides, phospholipids, and proteins. This
leads to a broad range of vibrational modes. Notably, the
spectra of LDL and VLDL showed considerable similarity
to one another (Figure 2, see also Figure S1). However,
HDL, being enriched with apolipoprotein A1, reflected a
spectral profile more closely aligned with that of single
proteins than either LDL or VLDL did.

Comparatively, metabolites are smaller and more diverse
in terms of their chemical structures and functional groups.
This diversity leads to more unique vibrational modes for
each metabolite and narrow peaks, resulting in more distinct
IR spectra (Figure 2). Nevertheless, some metabolite spectra

share similarities to protein spectra. For example, urea – as
we previously mentioned, and was highlighted by Ollesch
et al.[51] – and, naturally, amino acids, such as glutamine,
share these similarities. Furthermore, some metabolite pairs,
such as glycine and alanine or lactic acid and beta-
hydroxybutyric acid (BHB), can share similar spectral
profiles with one another. Therefore, caution should be
taken even when linking spectral signals to smaller mole-
cules. Out of all the substances investigated, glucose was
found to generally have the most unique spectral profile,
which likely explains the high efficacy of quantifying its
concentrations from IR spectra of blood plasma, serum, and
whole blood.[14,52–55]

Ambiguity of Signals in Complex Mixtures

While the spectra of individual organic substances can be
very similar, the problem of overlapping signals becomes
much more prominent when considering the plethora of
substances in biological samples. Take a health phenotyping
scenario as an example. The typical study reveals how some
spectral features significantly differ between two (or more)
phenotypes of interest. In many instances, a discussion
ensues that relies on peak positions to decipher the bonds
and chemical nature of the underlying molecules responsible
for such spectral differences.[45,47,48,56–64] Here, we illustrate
how the signal of one substance can be almost perfectly
replicated by a combination of only a few other substances
(Figure 3) – deeming such speculative assignments unpro-
ven.

We modeled the spectra of different proteins and lipid
particles as a linear combination of other substances [Eq. 2].

y �
Xm

i¼1

xi � ci (2)

y represents the target spectrum to be reproduced at a
given concentration, xi are spectra of other substances, and
ci represents their respective concentrations. The concen-
trations ci were determined by a computational optimization
that minimizes the reconstruction error. To keep it simple,
we limited the number of substances used to reconstruct the
target to four (m ¼ 4).

We found that the IR spectra of all the proteins and lipid
particles we considered could indeed be reproduced to a
high degree, while only using relatively few substances
(Figure 3, Supplementary Figure S2). Interestingly, the me-
tabolite spectra were heavily utilized in reconstructing the
target to capture the smaller peaks apparent within the
larger molecular structures. This analysis demonstrates,
albeit with an extreme example, that observing an IR
spectral signal that resembles an individual substance may
indeed be caused by a mix of other possibly fully
independent molecules that may not even contribute to the
same signaling pathways nor be mechanistically intercon-
nected.

To provide a parallel demonstration of a more realistic
application, we reconsidered one of our previous works.[29]

Figure 2. Similarity among IR spectra of organic substances present in
blood. Color intensity represents the level of similarity between pairs of
IR absorption spectra (960–3000 cm� ) of single substances. Brighter
colors indicate higher spectral overlap. VLDL - Very low-density lip-
oprotein; LDL - Low-density lipoprotein; HDL - High-density lipoprotein; TF
- Transferrin; HP - Haptoglobin; A1AT - Alpha-1-antitrypsin; A1ACT -
Alpha-1-antichymotrypsin; IgG - Immunoglobulin G; IgA - Immunoglobulin
A; A2 M - Alpha-2-macroglobulin; HSA - Human serum albumin; IgM -
Immunoglobulin M; A1AG - Alpha-1-acid glycoprotein; BHB - Beta-
hydroxybutyric acid; ATP - Adenosine triphosphate.
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This study investigated a case-control biomedical diagnostic
application to detect spectral differences due to lung cancer
with FTIR spectroscopy of blood serum. Mass spectrometry-
based proteomics profiling of the same sample set helped
identify the differences in protein concentrations between
cases and controls (Figure 4A). In the prior work, we found
that the differences between the spectra of case and control
individuals observed in bulk serum spectra could be largely
reproduced from a reduced molecular model that relied on
three proteins (Figure 4B, upper panel). These proteins
(HSA, HP, and A1AG) were identified as the ones that
changed the most in absolute concentration between the
case and control individuals, as measured by proteomics.

Now, we demonstrate that this very previously described
lung cancer IR signal can be derived when other combina-
tions of three individual proteins are considered (Figure 4B,

remaining panels). Interestingly, in one of the four examples
we present, the lung cancer signal could be largely replicated

Figure 3. Ambiguity of individual substances in complex mixtures.
Spectra of individual substances (black) of larger molecular structures
were reconstructed by combining the spectra of other substances
(red). The linear combinations were determined by scaling each
component with the listed concentrations to yield a reproduced
spectrum of the target at 10 g/l. Supplementary Figure S2 depicts the
same analysis on an expanded set of proteins and lipid particles. A1AT
- Alpha-1-antitrypsin; HSA - Human serum albumin; IgG - Immunoglobu-
lin G; A1ACT - Alpha-1-antichymotrypsin; IgA - Immunoglobulin A; HP -
Haptoglobin; A1AG - Alpha-1-acid glycoprotein; HDL - High-density
lipoprotein; LDL - Low-density lipoprotein; ATP - Adenosine triphosphate;
VLDL - Very-low-density lipoprotein.

Figure 4. Replicating lung cancer-induced spectral deviations with
different proteins. (A) Blood serum was collected from case and
reference control individuals to investigate spectral changes due to
presence of lung cancer. Two measurements were performed on the
same sample sets: Bulk serum IR absorption spectroscopy and
proteomics-based profiling, as described in detail previously.[29] (B)
Black curves depict the difference in the mean IR measurements
between case and control individuals. Blue curve (upper panel) depicts
a reproduced signal based on the three proteins that changed the most
between case and control individuals, as determined through proteo-
mics. Remaining curves (red) reproduce the same signal with other
combinations of three proteins that were determined computationally
(i.e., without direct evidence linking this protein combination to the
true signal). Bar graphs depict the concentration changes in the
modeled proteins that yielded the blue and red curves. HSA - Human
serum albumin; HP - Haptoglobin; A1AG - Alpha-1-acid glycoprotein; TF -
Transferrin; IgG - Immunoglobulin G; A2 M - Alpha-2-macroglobulin;
A1AT - Alpha-1-antitrypsin; A1ACT - Alpha-1-antichymotrypsin; IgG -
Immunoglobulin G.
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with changes in concentrations of A1AT, A1ACT, and IgG
– three proteins that were not even relevant in the
proteomics-based model. This further showcases that with-
out supplementing the IR approach with yet further
analytical methods capable of molecular identification (e.g.,
various -omics approaches), conclusions on which molecules
contribute to discriminative signals can very likely lead to
inaccurate conclusions.

Signals ofLow Abundant Molecules

In some cases apparent in scientific literature, molecules of
a very low concentration are linked to specific wavenumbers
and suggested to be responsible for observed signals in the
analyzed specimens.[45,46,61,62,64–70] Typical examples are circu-
lating cell-free RNA/DNA and known biomarkers such as
CA125, mannose, or PSA. Using cell-free DNA and RNA
as case examples, here we demonstrate that such substances
are so far below the detection limit that the measurement
variability certainly conceals their expected contribution to
the possibly detectable IR spectral signals (Figure 5).

The median concentrations of circulating DNA and
RNA have been reported to range between 6.8–10 ng/ml in
cell-free blood.[71–73] Highest individual concentrations can

reach near 100 ng/ml. At their median concentrations, these
substances are around three orders of magnitude below the
detection limit of a typical IR spectrometer (Figure 5).[19,74]

Even if their concentrations were 1000 times higher than the
median, they would remain well below the threshold
necessary to reliably link their contributions to spectral
signals, especially given the between-person biological
variability of cell-free blood.

Accordingly, when analyzing cell-free blood, any ob-
served changes in IR absorption cannot be attributed to
variations in circulating DNA/RNA concentrations. It is
important to note that DNA/RNA in tissues such as the
liver, spleen, or heart can reach rather high concentrations
that may shape IR spectra. Therefore, the conclusions drawn
from this analysis should not be generalized to other
biological specimens.

Chemical Modifications of Molecules

Some attempts to interpret changes between two groups of
vibrational signatures rely on the spectra of cell-free blood
components recorded in isolation from their environment or
on tables of characteristic vibrational modes.[56,57,59,60,67,75] This
approach overlooks the interactions between various blood
components, such as extracellular molecular transport by
effective diffusion or assembly into higher-order complexes
that modulate and regulate their dispersal (e.g., via proteins
or encapsulation of molecules in extracellular vesicles).[42,76]

This very study also suffers from this limitation to some
degree: The formation of non-covalent macro-molecular
complexes may lead to shifts in vibrational frequencies that
are overlooked when merely aggregating the contributions
of individual components. However, a much larger change
in the IR spectroscopic signatures of molecules, especially
small ones, can be caused by the formation of additional
covalent bonds. Here, we consider two examples of the
many modifications that molecules undergo in their life
cycle (Figure 6).

Protein glycosylation is a complex post-translational
modification that is sensitive to changes in the health status
of individuals.[77] For instance, altered sialylation has been
reported in multiple cancers and liver diseases.[77] The IR
absorption spectrum of N-Acetylneuraminic acid – the most
common sialic acid – is depicted in Figure 6A. The sharp
peak at 1730 cm–1 has been previously assigned to the
� COOH vibration of sialic acid and used to monitor the
degree of protein sialylation.[78–80] We then compared the IR
absorption spectrum of bovine fetuin with its desialylated
form, asialofetuin. The difference between their spectra
clearly lacks the sharp peak at 1730 cm� 1 that is apparent in
free sialic acid (Figure 6A). Instead, the peak at 1035 cm� 1

may be used to characterize the presence of sialic acid. In a
complex mixture, however, this peak would at least partially
be masked by the variability of other glycans and thus not
detected.

The region of the IR spectrum that is often referred to
as “carbohydrate” is also sometimes labeled as “fingerprint”
– because it is sensitive to the overall changes in the

Figure 5. Contributions of cell-free nucleic acids relative to IR detection
limits. Black curve depicts the IR absorbance of a typical human serum
sample. Gray curve depicts the standard deviation of serum spectra
across different individuals. Brown curve depicts the detection noise of
the IR measurement, determined by calculating the standard deviation
of repeated measurements of a technical replicate (pure water).
Dashed curves depict the IR absorbance spectra of RNA (green) and
DNA (blue) at 100x their median concentrations in cell-free blood,
while solid lines represent their absorbance at their typical median
concentrations. Y-axis is plotted on a logarithmic scale.
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molecular structure. Although the absorption pattern there
can be used to confirm the presence of a specific molecule,[1]

the change in this pattern due to a chemical modification of
the molecule is challenging to predict without quantum
chemical calculations. To illustrate this, we compared the IR
absorption spectra of substituted glycans: D-glucosamine-
6O-sulphate and D-glucosamine-6O-phosphate (Figure 6B).
The difference in their functional groups causes a shift in the
characteristic asymmetric stretching band from 1186 cm� 1 to
1222 cm� 1, as expected. However, in addition to that, there
was a significant shift of all the bands below 1200 cm� 1. It is
crucial to note that all these changes were caused by one
chemical modification, with no changes in the carbohydrate
content.

The presented examples serve as a reminder that vibra-
tional spectra of molecular structures, especially small ones,
are highly sensitive to their surroundings and chemical
modifications. This is especially true for the “fingerprint”
region of the IR spectrum, but not limited to it. It is also
important to acknowledge that post-translational modifica-
tions, such as sulphation, phosphorylation, methylation,
glycosylation, etc., contribute not only their specific IR
signatures directly, but might also affect other spectral
regions by changing the 3D structure of the whole macro-
molecule.

Effects of Measurement Preprocessing

To further compound the issue, molecular interpretation in
spectral datasets is often performed without considering the
preprocessing steps performed prior to data analysis.
Common preprocessing steps include vector/peak normal-
ization, baseline correction, offset correction, and smoothing
– as comprehensively described in prior work.[28,81,82] While
such data manipulations can help reduce noise and make
datasets more comparable, some preprocessing steps can
lead to artifacts in the analysis, including correlations in the
noise structures of the data.[28] These artifacts can result in
false peaks that range from being very apparent in the data
to being subtle and hard to detect. Here, we considered
vector normalization (L2) as an example of a widely applied
method to improve measurement reproducibility[13,28,81,83] and
demonstrate how it can mislead peak interpretations.

Consider a case-control scenario in which only the
concentration of one molecule changes between two groups
of samples. To model such a situation computationally, we
spiked (added) the spectrum of HSA to a typical spectrum
of blood serum. We then calculated the difference between
the unspiked and spiked spectra (Figure 7A). We performed
this analysis both with and without the normalization step,Figure 6. Impact of chemical modifications on IR spectra. (A) Absorp-

tion spectrum of free sialic acid (N-acetylneuraminic acid, red)
compared to the absorption differences obtained by subtracting the IR
spectrum of asialofetuin (the desialylated form of fetuin) from that of
fetuin (black). (B) Absorption spectra of D-glucosamine-6-O-sulphate
(blue) and D-glucosamine-6-O-phosphate (green).

Figure 7. Effect of vector normalization on spectral interpretations. (A)
Human serum albumin (HSA) was spiked to a typical blood serum
spectrum. The curves depict the difference between the unspiked and
spiked spectra, with and without vector normalization. (B) Same
investigation, but spiking the spectrum of glucose instead of HSA.
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applied prior to subtraction. Very evidently, the resulting
signal becomes hard to interpret when normalization was
used, and associating this signal to the change in the HSA
concentration would be nearly impossible. Although the
negative absorbance near the amide-I and -II regions was
somewhat preserved in the normalized depiction, artifacts of
positive “absorbance” were introduced across the remaining
regions of the spectrum.

We then repeated the above analysis, but computation-
ally spiking in the glucose spectrum instead (Figure 7B). The
shape of the signal in the region between 960–1200 cm� 1 was
mostly preserved between the normalized and non-normal-
ized depictions. However, artifacts of positive absorbance
now appeared near the amide-I and -II regions – despite the
absence of any significant absorbance in the spectrum of
glucose in this region. Such an artifact could easily mislead
one to think that there was a difference in protein content
between the two groups of spectra. In reality, only the
glucose concentration was altered.

Generally, applying measurement preprocessing steps
may be necessary, particularly also to Raman
spectroscopy.[84] Therefore, we do not suggest to eliminate
these steps. Rather, in conjunction with Morais et al.,[28] we
advocate for their cautious use, considering their potential
impact on the data analysis. In some instances, this impact
could make peak interpretations simply unfeasible.

Univariate and Multivariate Spectral Analysis

The task of analyzing complex vibrational spectra neces-
sitates robust statistical methods that can effectively uncover
subtle yet critical spectral information often masked by
overlapping signals. For instance, the power of multivariate
statistical methods has long been recognized in spectral data
analysis, including in foundational work of FTIR
spectroscopy.[85] Several studies offer constructive tutorials
and guidelines on selecting appropriate data analysis
methods for spectral data.[1,7,24,26–28,86] Here, we do not go
through an extensive description of the technicalities of data
analysis methods. Instead, we focus on their capacity to
capture information on molecular substances from spectral
datasets. First, we demonstrate how simple univariate
analysis can be insightful, and then we point out its
limitations, which necessitate the application of more
advanced multivariate methods (Figure 8).

As an example, we revisited one of our previous
studies.[14] There, blood plasma from a large population-
based cohort was profiled with FTIR spectroscopy (Fig-
ure 8A). Laboratory clinical chemistry analyses were per-
formed on the same blood samples to quantify the concen-
trations of triglycerides (TG), LDL cholesterol (LDL� C),
and HDL cholesterol (HDL� C) (Figure 8A,B). This allowed
us to correlate the information content of the plasma IR
spectra with the clinically determined concentrations of
these lipid-centric analytes.

First, we calculated the Pearson correlation coefficient
(r) between the concentrations of the three analytes and the
IR absorbance observed in bulk plasma at each univariate

spectral feature (Figure 8C). As a reference, we compared
this correlation spectrum with that of the individual sub-
stance spectrum relevant to each analyte. Given that TG
constitutes 50% of VLDL dry mass,[43] we compared the
correlation of TG with that of the VLDL spectrum.

For TG and LDL� C, we found a high level of agreement
between the univariate correlation spectrum and that of the
individual lipid particles (Figure 8C). In particular, the
narrow region between 1745–1750 cm� 1 revealed a strong
correlation between bulk plasma absorbance and the
concentrations of the two substances. Specifically for TG,
the peak at 1748 cm–1 aligned with that of the VLDL
reference spectrum and at a very high correlation (r ¼ 0:92).
This suggested that spectral signals relating to TG at this
peak were largely not masked by the presence of any other
substances. Surprisingly, however, the region of 2800–
3000 cm� 1 revealed a lower correlation level compared to
the aforementioned region of 1745–1750 cm� 1 for both TG
and LDL� C. Given that the spectra of the pure substances
have peaks with the strongest intensity between 2800–
3000 cm� 1, this suggested that the contributions of VLDL
and LDL were overshadowed by other substances that also
contribute spectral signals within that region, e.g., proteins,
in line with Figure 1B,G.

In contrast, HDL� C revealed relatively weak correla-
tions across the whole spectral range (Figure 8C). At the
amide bands, for instance, no significant correlation strength
was observed. This suggested that the plethora of other
proteins in cell-free blood masked the signals resulting from
HDL. Similarly, in the regions between 1745–1750 cm� 1 and
2800–3000 cm� 1, no strong correlation was observed. This
suggested that the signal of HDL� C was, again, over-
shadowed by the presence of other substances – namely, TG
and LDL� C – which together have a much higher concen-
tration than HDL� C (Figure 8B). Altogether, this analysis
demonstrated that the HDL� C concentration had no single
distinctive spectral feature that could be reliably linked to its
concentration, unlike TG and LDL� C.

Compared to the prior analyses that relied on a
relatively simple univariate approach, multivariate analysis
is capable of considering the interactions among features.
Such an aspect provides a more granular view of the
information contained within the complex spectra as subtle
dependencies between the absorption peaks can be captured
– ones that would be otherwise obscured in a univariate
context. To put this into practice, we trained a ridge
regression model to quantify the clinically determined
concentrations of the three lipid analytes given an input
plasma spectrum (Figure 8D). When all the features in the
spectral range were considered, a very high quantification
efficacy was observed for all three analytes, with R2 values
ranging from 0.90 to 0.97. Notably, even HDL� C was well
quantified despite its lack of single distinctive features. This
analysis highlights the power of multivariate algorithms to
extract comprehensive insight from the information-rich IR
spectra.

It is also crucial to recognize that the information across
several spectral features is highly co-dependent. As pre-
viously discussed, individual substances can have many
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peaks across a wide range of frequencies. To illustrate the
magnitude of this point, we performed the above regression
analysis again, but paradoxically, using only the spectral
range between 1000–1700 cm� 1 – i.e., the range that had
minimal univariate correlation to the lipid analytes. Surpris-
ingly, the quantification efficacy for TG, LDL� C, and
HDL� C remained nearly unchanged (Figure 8E). This
further demonstrates the magnitude of the multi-colinearity

present within the spectral features and highlights that
linking biological substances to specific spectral bands is
highly questionable – especially when multivariate analysis
methods are employed.

As demonstrated above, considering a large number of
spectral features provides a more accurate overview of the
breadth of molecular information in the IR spectra. To
further examine this, we quantitatively determined the

Figure 8. Unraveling the informational content of complex spectra with univariate and multivariate statistical analysis. (A) Blood samples were
collected from a large, population-based cohort for FTIR spectroscopy and clinical laboratory analysis to determine lipid analyte concentrations. (B)
Distributions of lipid analyte concentrations in the population. (C) Absorbance spectra of single lipid particles (darker colors, upper panels) and
the correlation between plasma absorption to the concentrations of the three lipid analytes (brighter colors, lower panels). (D) Multivariate
regression models were trained to quantify the concentrations of each lipid analyte given an input spectrum of plasma. Each point represents the
model’s prediction for a plasma sample against the clinical measurement. A 10-fold cross-validation was applied. Only the predictions of the test
sets of the cross-validation splits are depicted. (E) Same multivariate regression analysis, but using a truncated spectral range as input to the
model here. (F) Dependency between the number of spectral features given to the regression model and the quantification efficiency of each lipid
analyte. A forward feature selection algorithm was applied to determine the optimal spectral features at each point. All correlation and regression
analyses were applied on non-normalized spectra.
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number of spectral features that were required to effectively
quantify the concentrations of the lipid analytes. We
examined the quantification efficacy for each studied
analyte, considering a varying amount of spectral features
given to the regression model (Figure 8F). These features
were iteratively selected by a forward selection algorithm to
determine the most optimal input features at each point. For
TG, utilizing only one distinctive feature (1748 cm� 1) had
already resulted in a high quantification efficacy. Including
just one more feature resulted in a nearly saturated
quantification efficacy, revealing that the signal of TG can
be adequately isolated using only two spectral features.
Comparatively, for LDL� C and HDL� C, utilizing one or
two spectral features proved to be insufficient. Specifically
for HDL� C, nearly 64 different spectral features were
required to reach the full potential of correlating its signal to
the plasma spectra. Given that most substances in blood
likely do not have such a distinctive feature as TG does,
utilizing a low number of features or, e.g., considering
spectral ratios, is therefore unlikely to provide a comprehen-
sive view of the spectral informational content.

To summarize, when relating an IR absorption spectrum
of a bulk mixture to certain components of interest:
1. univariate analysis (or use of a limited selection of peaks)

is only appropriate when the signal of the substance is
very strong and not masked by other compounds;

2. multivariate analysis may be capable of capturing
information about a substance that is heavily over-
shadowed by the contributions of other compounds;

3. spectral features are highly co-dependent, which allows
for analyzing the signature of substances in spectral
regions where they do not have prominent peaks; and

4. to harness the power of multivariate analysis, a substan-
tial amount of spectral features are needed to discern
complex feature inter-dependencies (beyond spectral
ratios).

Navigating the Pitfalls of Spectral Interpretations

The question of how to most effectively analyze vibrational
spectra of complex biological samples has no straightforward
answer. Each analytical task is unique, targets different
biological phenomena, is specific to different medical
scenarios, and faces different requirements and challenges.
Generally, we as a community would like to have a realistic
overview of the molecules and their combinations we are
profiling when analyzing complex biological matrices.
Equally important is raising awareness about what we
cannot possibly observe as it is beyond the technical
limitations of the current technology and analytical setting.
Furthermore, we would like to develop robust analytical
workflows that accurately model alterations in a studied
system (e.g., characteristics of the human phenotype).
Below, we discuss how to approach these tasks.

First, to produce a more realistic view of the composition
of the IR spectrum from cell-free blood, we decomposed it
into the contributions of its primary molecular classes:
metabolites, proteins, and lipid particles (Figure 9A). It is

evident that proteins dominate the absolute absorption
signals across the spectral range, considering that lipid
particles also contain a proportion of proteins. When
examining the relative contributions of each molecular class,
their influence on absorption signals significantly varies
across the spectral range (Figure 9B). These representations
should not imply that one molecular class provides more
information over another. For example, glucose, a metabo-
lite, can be reliably determined in blood plasma, serum, and
whole blood using IR spectroscopy as previously
mentioned.[14,52–55] Rather, these representations further
underscore the notion that the IR spectrum should not be
overly simplified into discrete regions exclusively linked to
specific molecular classes. Each substance and each molec-
ular class contributes to the composite nature of the overall
IR spectrum, which offers a holistic view of the molecular
landscape within the sample.

When confronted with changes in the IR absorption
spectrum of a biological sample, researchers may be tempted
to seek simple, intuitive explanations. However, as demon-
strated in our examples, such approaches should be avoided
unless robustly validated. Machine learning and multivariate

Figure 9. Composite makeup of a typical infrared spectrum of venous
blood serum. (A) Stacked representation of the primary molecular
classes found in cell-free blood. Individual component spectra of each
substance were scaled according to their typical concentrations in
healthy adults (Supporting Information Table S1) and combined to
estimate the cumulative spectral contributions. Molecular classes were
stacked in sequence, with metabolites at the base, followed by lipid
particles, and proteins on top. Black curve represents the contribution
of their total sum, approximating the spectrum of blood serum.
Supplementary Figure S3 compares the approximated spectrum with a
true serum spectrum. (B) Relative absorption contribution of each
molecular class, illustrating the proportions of total absorption across
the spectral range. ATP - Adenosine triphosphate; BHB - Beta-
hydroxybutyric acid; HSA - Human serum albumin; IgG - Immunoglobulin
G; IgA - Immunoglobulin A; IgM - Immunoglobulin M; A1AG - Alpha-1-
acid glycoprotein; A1AT - Alpha-1-antitrypsin; A1ACT - Alpha-1-antichymo-
trypsin; HP - Haptoglobin; TF - Transferrin; A2 M - Alpha-2-macroglobulin.
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statistical methods are instrumental in scenarios where the
molecular components are numerous and the relationships
between them are complex. Nevertheless, it is crucial that
these statistical models are trained on reproducible, high-
quality, well-characterized datasets and that the results are
reasonable within the biological context of the study. This
typically requires large datasets that accurately reflect
demographic distributions, include appropriate control
reference samples, and involve diverse pathophysiological
strata (e.g., comorbidities or stages of a disease). Further-
more, biological systems are inherently dynamic, and thus,
statistical models should be regularly updated with new
data. Adapting and learning from new inputs will help
improve the statistical models’ accuracy and relevance. This
is especially important in clinical, medical settings, where
training data must mirror realistic data variations caused by
inherent biological variabilities (e.g., lifestyle changes and
aging), sample collection variations, differences in sample
storage regimes, measurement device maintenance, and
other technical variations typically encountered in
practice.[87] Furthermore, independent external validation of
developed models on samples from different clinical studies
is essential to more robustly determine whether results are
reproducible.

If molecular interpretations of changes in the IR
absorption spectrum are necessary, we suggest involving
complementary analytical techniques. Techniques such as
mass spectrometry, nuclear magnetic resonance (NMR)-
based omics, and clinical chemistry provide orthogonal
information that aids in this process.[14,29,88,89] Another fruitful
avenue is to reduce the molecular complexity via chemical
fractionation – e.g., liquid chromatography,[30] protein
precipitation[29] or ultrafiltration.[10,31–33] IR measurements
can then be performed on the individual fractions, which are
less complex in terms of their molecular makeup and might
be easier to interpret. These strategies offer independent
confirmation of molecular identities and concentrations,
enabling further verification of the findings. Furthermore,
the results should be compared to other biomarker research
efforts, and the molecular-specific mechanistic and pathway
information that the medical community sometimes requires
should be provided. Once the molecular mechanisms are
provided and validated, the IR approach can be used in its
high-throughput mode – without the involvement of orthog-
onal measurement approaches.

Generally, the conceptional suggestions presented here
can be broadly applied to IR spectroscopic examinations of
other complex biological systems beyond blood plasma.
Extensions to model paradigms such as yeast, bacterial,
algal, and mammalian cells, as well as animal, human, and
plant tissues can be envisioned. However, it is important to
consider that the IR spectral signatures of different model
paradigms can significantly vary due to their distinct
molecular makeup (e.g., the content of proteins vs. carbohy-
drates is different between animal and plant models[90]) and
there may be instances where the assignment of spectral
regions to specific molecular entities is feasible. For
instance, certain wavenumbers in cellular spectra can be
qualitatively linked to nucleic acid content,[91] or sialic acid

content may be identified at specific wavenumbers in spectra
of extracellular polymeric substances.[79] Nevertheless, spec-
tral molecular assignments must be performed cautiously
and, ideally, supplemented with additional experimentation,
as previously discussed.

Transparency and the critical evaluation of the reported
results are also essential aspects. Documentation of all
analytical steps and assumptions for interpretations should
be clearly communicated in peer-reviewed works. For
instance, it is crucial to detail the data preprocessing steps
and their impact on the observed spectral signals. The
spectroscopic technique’s dynamic range and sensitivity
limits must always be considered and recognized, especially
when dealing with low-abundant substances. Another rarely
discussed aspect revolves around the sample collection
methodology (e.g., if a variety of sample collection tubes
were used within the same study). For instance, blood
plasma collection tubes, as opposed to serum, use ethyl-
enediaminetetraacetic acid (EDTA) or other anticoagulants
within the blood draw tubes. EDTA typically has a high
enough concentration that it contributes to absorption
signals of bulk plasma spectra to a significant extent
(Supplementary Figure S4). Changes in the blood draw and
sample processing workflows or the use of samples from
different clinical studies and clinical centers could therefore
lead to noticeable variations in the signals when studying
certain biological phenomena, potentially confounding the
results.

Finally, the value of multidisciplinary research must be
recognized. A purely chemical, spectroscopic perspective is
no longer sufficient on its own. It must be complemented by
expertise in biological/medical sciences, computational anal-
yses, and physical interpretations. Encouraging collabora-
tion across these disciplines integrates knowledge from
different perspectives. Collaborative efforts can drive inno-
vative solutions to the challenges of interpreting complex
spectra and lead to the development of new analysis
techniques.

Conclusion

In this perspective, we highlighted the critical yet often
overlooked intricacies of analyzing vibrational spectral data,
particularly IR spectroscopy of cell-free blood. The meth-
od’s capacity to provide molecular fingerprints is unmatched
in its simplicity, speed, and molecular breadth – making it a
prime candidate for inclusion in high-throughput diagnostic
workflows. To bring the technology further, and to mitigate
it to practical use in possible medical diagnostics, its
limitations, however, must always be recognized.

Our illustrative case studies utilized thousands of blood-
based spectra in addition to spectra of predominant proteins,
major lipid particles, and key metabolites. These single-
component spectra together make up the primary compo-
nents of cell-free blood. Yet, we acknowledge that this is not
an exhaustive list of all blood constituents and that our
approach did not consider inter-molecular interactions.[92]

Nonetheless, by expanding the scope of substances analyzed
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and considering the interactions between these molecular
components, isolating the signal of specific molecules in
complex mixtures becomes even more challenging, as our
analysis demonstrates.

Moving forward, we advocate caution when performing
IR spectral interpretations to avoid speculative conclusions
that could undermine the applicability as well as accept-
ability of research, particularly in clinical settings. Instead,
the high-throughput fingerprinting nature of the approach
should be accepted. By embracing both its capabilities and
limitations, we can more effectively establish robust spectro-
scopic analytical workflows.
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The Perils of Molecular Interpretations
from Vibrational Spectra of Complex Sam-
ples

Vibrational spectroscopy is a powerful
molecular fingerprinting tool. Yet, inter-
preting IR spectra of molecularly com-
plex media is challenging. Here, we
examine the often-overlooked intricacies
of spectral data analyses, revealing com-

monly misleading interpretations. Fo-
cusing on blood-based IR spectroscopy,
we argue for a viewpoint shift to accept
the technique’s fingerprinting nature
and provide suggestions to improve
analytical practices.
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